Our knowledge about land-use impacts on biodiversity and ecosystem functioning is mostly limited to single trophic levels, leaving us uncertain about whole-community biodiversity-ecosystem functioning relationships. We analyse consequences of the globally important land-use transformation from tropical forests to oil palm plantations. Species diversity, density and biomass of invertebrate communities suffer at least 45% decreases from rainforest to oil palm. Combining metabolic and food-web theory, we calculate annual energy fluxes to model impacts of land-use intensification on multitrophic ecosystem functioning. We demonstrate a 51% reduction in energy fluxes from forest to oil palm communities. Species loss clearly explains variation in energy fluxes; however, this relationship depends on land-use systems and functional feeding guilds, whereby predators are the most heavily affected. Biodiversity decline from forest to oil palm is thus accompanied by even stronger reductions in functionality, threatening to severely limit the functional resilience of communities to cope with future global changes.
Here, we found that most dispersal events in both Branchinecta species have been happening within 100 km. This distance is well in accordance with the dispersal habits of most waterbirds62,63. The role of waterbirds as dispersal agents is well documented for many aquatic invertebrates, including anostracans31,62,64,65,66. The studied Branchinecta species in Central Europe and Spain inhabit shallow sodic lakes of a relatively large surface area67,68, situated along the seasonal migration routes of a diverse set of waterbird species69, among which several are even proven to be attracted to habitats with the most abundant Branchinecta populations70. This altogether implies the dominant role of waterbirds connecting local populations. Right after the glacial retreat, the dispersal of Branchinecta could have been further facilitated by historic long-distance mammal migrations, specifically related to the extinct megafauna71, e.g. mammoth species (Mammuthus spp.), that are known to carry diverse propagules including Branchinecta resting eggs on their body72. They once inhabited a vast area of Eurasia and moved over large distances73,74, similar to their extant sibling species the African elephants, also known as vectors for passive dispersers75. However, nowadays large mammals can only contribute to small-scale dispersal events33,76.
Invertebrate Zoology Barnes Pdf 436
Download Zip: https://tinurli.com/2vHccn
While some taxa may be justifiably ignored in these four ecosystems (e.g. if they do not commonly occur there), some highly speciose groups are underrepresented in the literature and may be very important in these ecosystems. Compared to their described diversity, several classes of Arthropoda have been poorly studied in all four ecosystems, and are likely to be prevalent in some (Fig. 4, Table S1). In terrestrial ecosystems, arthropods are highly diverse [40] playing many functional roles [41]. Similar patterns and breadth of ecological function are likely to occur in marine environments. In addition to some of the Arthropoda, several other groups of benthic invertebrates were also understudied with respect to their described diversity. Benthic invertebrates more generally are likely to play an important role in many ecosystems as they span all trophic levels, are important food sources at higher trophic levels and perform crucial roles in bioturbation, oxygenation, nutrient cycling and transport and processing of pollutants [42]. 2ff7e9595c
Comments